www.a2zpapers.com

Exam. Code : 103202
 Subject Code : 1029

B.A./B.Sc. $2^{\text {nd }}$ Semester MATHEMATICS
 Paper-II (Calculus)

Time Allr,wed-Three Hours] [Maximum Marks-50
Note :- Attempt FIVE questions in all selecting at least TK 3 questions from each section. All questions carry (qu'a! marks.

SECTION-A

1. (a) Show that tive furction

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{\sqrt{x^{2}+j^{2}}}, & (x, y) \neq(0,0) \\
0 & ,(x, y)=(0,0)
\end{array}\right.
$$

is continuous at origin.
(b) If for a function $\mathrm{f}, \mathrm{f}_{\mathrm{x}}$ exists ana is bounded in a neighbourhood of (a, b) and f_{y} exists at (a, b), then show that f be continuous at (a, b). 5,5
2. (a) State and prove Schwarz's theorem.
(b) If $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2}+x y}{x+y}, & \text { if }(x, y) \neq(0,0) \\ 0 & , \text { if }(x, y)=(0,0)\end{array}\right.$, find $f_{x}(0,0)$, $f_{y}(0,0)$.

www.a2zpapers.com

3. (a) Expand $\mathrm{e}^{\mathrm{x}} \tan ^{-1} \mathrm{y}$ about the point $(1,1)$ up to the second degree in $(x-1)$ and $(y-1)$.
(b) Find the maxima and minima of the function

$$
f(x, y)=x^{3}+y^{3}-3 x-12 y+20
$$

4. (d) If α, β, γ are roots of the equation in t, such that $-\frac{u}{-1}+\frac{v}{b+t}+\frac{w}{c+t}=1$, then prove that

$$
\frac{\partial(\mathrm{u}, \mathrm{v}, \mathrm{w})}{\partial\left(r_{i},(\beta, \gamma)\right.}=-\frac{(\beta-\gamma)(\gamma-\alpha)(\alpha-\beta)}{(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{a}-\mathrm{b})} .
$$

(b) Find the ervelope of the circles which pass through the centre of th. cilipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and their centres are upon i's circumference.
5. (a) If $x=r \cos \theta, y=r \sin :{ }^{\prime}$, prove that

$$
\frac{\partial^{2} \theta}{\partial x \partial y}=\frac{\partial^{2}(\log r)}{\partial y^{2}} .
$$

(b) Find the envelope of the system of concentric and co-axial ellipses of constant area.

SECTION-B

6. (a) Evaluate $\iint x^{3} y^{3} d x d y$ over the area bounded by the parabolas $y^{2}=a x, y^{2}=b x, x^{2}=p y, x^{2}=q y$, where $0<\mathrm{a}<\mathrm{b}$, and $0<\mathrm{p}<\mathrm{q}$.

www.a2zpapers.com

(b) Compute the volume of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

7. (a) Evaluate the integral $\int_{0}^{1} d x \int_{0}^{x} \sqrt{x^{2}+y^{2}} d y$, by
pa'sing on to the polar coordinates.
(b) Evaluate $\iiint_{0}\left(y^{2} z^{2}+z^{2} x^{2}+x^{2} y^{2}\right) d x d y d z$ taken E
over the dor: \mathfrak{z} bunded by the cylinder $x^{2}+y^{2}=2 a x$ and the cone $z^{2}=k\left(x^{2}+y^{2}\right)$.
8. (a) Evaluate $\iint_{E} \sin \left(\frac{x-y}{x+y}\right)$ dxdy, where E is the region bounded by the cr,-c:dinate axes and $x+y=1$ in the first quadrant
(b) Compute $\mathrm{I}=\iiint \sqrt{1-\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}-\frac{\mathrm{z}^{2}}{\mathrm{c}^{2}}} \mathrm{c}^{2} x d y d z$ taken over the region $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
9. (a) Evaluate by changing the order of integration in

$$
\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} d x d y
$$

www.a2zpapers.com
(b) Prove that

$$
\begin{array}{r}
\iiint_{E} \sqrt{\frac{1-x^{2}-y^{2}-z^{2}}{1+x^{2}+y^{2}+z^{2}}} d x d y d z \\
=\frac{\pi}{8}\left[\beta\left(\frac{3}{4}, \frac{1}{2}\right)-\beta\left(\frac{5}{4}, \frac{1}{2}\right)\right]
\end{array}
$$

10. (a) Find the surface area of that part of the surface of the cylinder $x^{2}+y^{2}=a^{2}$ which is cut out by the cylirde. $x^{2}+z^{2}=a^{2}$.
(b) Evaluate $\iint x^{2} y^{2} d x d y$ over the circle $x^{2}+y^{2} \leq a^{2}$. 5,5
