Exam. Code : 103202 Subject Code : 1029

B.A./B.Sc. 2nd Semester MATHEMATICS Paper—II (Calculus)

Time Alle wed-Three Hours] [Maximum Marks-50

Note :— Attempt FIVE questions in all selecting at least TWO questions from each section. All questions carry (qua' marks.

SECTION-A

1. (a) Show that the function

$$f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ \sqrt{x^2 + y^2}, & (x, y) = (0, 0) \end{cases}$$

is continuous at origin.

- (b) If for a function f, f_x exists and is bounded in a neighbourhood of (a, b) and f_y exists at (a, b), then show that f be continuous at (a, b). 5,5
- 2. (a) State and prove Schwarz's theorem.

b) If
$$f(x, y) = \begin{cases} \frac{x^2 + xy}{x + y}, & \text{if } (x, y) \neq (0, 0), \\ 0, & \text{if } (x, y) = (0, 0) \end{cases}$$

 $f_y(0, 0).$ 5,5

2540(2416)/QFV-51543 1 (Contd.)

- 3. (a) Expand $e^x \tan^{-1} y$ about the point (1, 1) up to the second degree in (x 1) and (y 1).
 - (b) Find the maxima and minima of the function $f(x, y) = x^3 + y^3 - 3x - 12y + 20.$ 5,5
 - 4. (a) If α , β , γ are roots of the equation in t, such that

 $\frac{u}{c_{1}} + \frac{v}{b+t} + \frac{w}{c+t} = 1$, then prove that

$$\frac{\partial(\mathbf{u},\mathbf{v},\mathbf{w})}{\partial(\boldsymbol{r}_{\lambda},\boldsymbol{\beta},\boldsymbol{\gamma})} = -\frac{(\beta-\boldsymbol{\gamma})(\boldsymbol{\gamma}-\boldsymbol{\alpha})(\boldsymbol{\alpha}-\boldsymbol{\beta})}{(\mathbf{b}-\mathbf{c})(\mathbf{c}-\mathbf{a})(\mathbf{a}-\mathbf{b})}$$

(b) Find the envelope of the circles which pass through

the centre of the chipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and their centres are upon its circumference. 5.5

5. (a) If
$$x = r \cos \theta$$
, $y = r \sin \theta$, prove that

$$\frac{\partial^2 \theta}{\partial x \partial y} = \frac{\partial^2 (\log r)}{\partial y^2}$$

(b) Find the envelope of the system of concentric and co-axial ellipses of constant area. 5,5

SECTION-B

6. (a) Evaluate $\iint x^3 y^3 dx dy$ over the area bounded by the parabolas $y^2 = ax$, $y^2 = bx$, $x^2 = py$, $x^2 = qy$, where 0 < a < b, and 0 .

2540(2416)/QFV-51543 2

(Contd.)

(b) Compute the volume of the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
 5,5

7. (a) Evaluate the integral $\int dx \int \sqrt{x^2 + y^2} dy$, by

passing on to the polar coordinates.

(b) Evaluate $\iiint (y^2z^2 + z^2x^2 + x^2y^2) dx dy dz$ taken

over the domain bounded by the cylinder $x^2 + y^2 = 2ax$ and the cone $z^2 = k(x^2 + y^2)$. 5.5

- (a) Evaluate $\iint_E \sin\left(\frac{x-y}{x+y}\right) dxdy$, where E is the 8. region bounded by the cr-ordinate axes and x + y = 1 in the first quadrant
 - (b) Compute I = $\iiint \sqrt{1 \frac{x^2}{a^2} \frac{y^2}{b^2} \frac{z^2}{a^2}} \, dx \, dy \, dz$ taken

over the region
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$
 5,5

(a) Evaluate by changing the order of integration in

$$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dx dy.$$

2540(2416)/QFV-51543

(Contd.)

(b) Prove that

$$\iiint_{E} \sqrt{\frac{1 - x^{2} - y^{2} - z^{2}}{1 + x^{2} + y^{2} + z^{2}}} \, dx \, dy \, dz$$

$$= \frac{\pi}{8} \left[\beta \left(\frac{4}{3}, \frac{1}{2} \right) - \beta \left(\frac{5}{4}, \frac{1}{2} \right) \right].$$
5,5

- 10. (a) Find the surface area of that part of the surface of the cylinder $x^2 + y^2 = a^2$ which is cut out by the cylinder $x^2 + z^2 = a^2$.
 - (b) Evaluate $\iint x^2 y^2 dx dy$ over the circle $x^2 + y^2 \le a^2$. 5,5

2540(2416)/QFV-51543

1

why where E is the

11000